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Directed polymers versus directed percolation
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Universality plays a central role within the rubric of modern statistical mechanics, wherein an insightful
continuum formulation rises above irrelevant microscopic details, capturing essential scaling behaviors. Nev-
ertheless, occasions do arise where the lattice or another discrete aspect can constitute a formidable legacy.
Directed polymers in random media, along with its close sibling, directed percolation, provide an intriguing
case in point. Indeed, the deep blood relation between these two models may have sabotaged past efforts to
fully characterize the Kardar-Parisi-Zhang universality class, to which the directed polymer belongs.
@S1063-651X~98!50810-0#

PACS number~s!: 64.60.Ak, 02.50.Ey, 05.40.1j
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Condensed matter physicists have become increasi
aware of the complex fractal geometric properties and r
nonequilibrium statistical mechanics exhibited by stocha
growth models, such as diffusion-limited aggregation~DLA !
and Eden clusters. In fact, the history of DLA@1#, now some
twenty years old, provides an interesting cautionary tale
those in the community concerned with far-from-equilibriu
dynamics. Although well-characterized numerically, and
compelling discrete model for various physical process
such as electrochemical deposition@2#, viscous fingering in
porous media@3#, and starved bacterial growth@4#, DLA
remains stubbornly shackled to the lattice formulation at
essence, with various theoretical formulations based upo
continuum description making slow, difficult progress.
rich contrast is provided by variousself-affine fractals, such
as Eden clusters, ballistic deposits, polynuclear growth, e
that fall within a single, rather large universality class go
erned by the celebrated stochastic partial differential eq
tion of Kardar, Parisi, and Zhang~KPZ! @5#. In this case,
there is quite extraordinary success of the continuum the
shedding much light upon numerical experiment. Connec
to actual physical systems has, however, been a bit less f
coming. Even so, patience has apparently paid off, si
there have been recent papers on diverse applications,
as flame-front propagation@6#, cumulus cloud formation@7#,
and matter correlation in the universe@8#, all suggesting
strong evidence of KPZ behavior. Interest in the KPZ eq
tion is amplified many fold by its mathematical relation
directed polymers in random media~DPRM! @9#, a baby ver-
sion of the spin-glass problem and one of the few exa
solvable problems of ill-condensed matter. In addition, th
is an explicit link to the stochastic Burgers equation as ma
fested in the simple asymmetric exclusion process, bea
fully captured in the work of Derridaet al. @10#. With kinetic
roughening phenomena, DPRM, and the stochastic Bur
equation constituting the so-called KPZ triumvirate, serio
capital investment has been made toward understanding
fundamental properties of this nonlinear stochastic par
differential equation~PDE!, as well as the models that fa
within its purview.

In this Rapid Communication, we discuss the difficu
legacy that the DPRM inherits via directed percolation~DP!.
Simulations are done in the wedge geometry, basic num
PRE 581063-651X/98/58~4!/4096~4!/$15.00
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cal details found in a recent review paper@11#. In a nutshell,
however, we consider the first quadrant of the square latt
rotated 45°, with random energies placed upon the dia
nally oriented bonds. Directed paths up to thenth time slice
have n11 possible endpoints, the total energy of a pa
given by the sum of the bonds visited along the way. Due
the 2n11 configurations accessible to the DPRM, an entro
cally generated elasticity competes against energy gains
sociated with particularly favorable bonds in the bulk, lea
ing to asuperdiffusivewandering exponentz, characterizing
transverse wandering,uxu;tz, of the DPRM. In d51,
z52/3 exactly, by virtue of a fluctuation-dissipation the
rem. Functional renormalization group methods@12# have
led to the conjecturez(d)56/(d18), which retrieves this
known result, captures a wandering exponent decrea
with dimensionality and, interestingly, suggests the possi
ity of a finite upper critical dimension~UCD!, dc54, which
appears to be corroborated by various KPZ mode coup
@13#, DPRM field-theoretic@14#, and directed percolation
@15# arguments. It should be stressed that KPZ/DPRM
merical work, including real-space renormalization gro
techniques@16#, transfer matrix @17#, and growth-model
simulations@18#, shows no evidence of a finite UCD, a sy
opsis of best efforts to date indicatingz50.624, 0.60, 0.57,
0.54 ford52,3,4,5. Even so, it is readily apparent that fo
is a very special dimension, indeed, for KPZ strong-coupl
physics, as indicated by the glassy dynamics unearthed
Moore et al. @19#, and the complete breakdown of perturb
tion theory recorded by Wiese’s exact calculation@20# of the
DPRM b function. In fact, as we will argue below, KPZ
glassiness is associated with the close kinship of the DP
problem to directed percolation, and manifests itself in ev
lower dimensions. Finally, this blood tie lies at the heart
purported KPZnonuniversalityadvertised recently by New
man and Swift@21# and, furthermore, reveals that there
still much to learn regarding the DPRM problem, even
d51.

Although it is well known that both spatially correlate
@22# and uncorrelated, but long-tailed power-law@23# noise
can drastically alter the DPRM wandering exponent,
stress that the distributions under consideration here ar
nite, bounded, well-defined, and seemingly innocuous. Th
are no built-in spatial correlations and all moments a
R4096 © 1998 The American Physical Society
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finite. However, the distributions are either tied directly
bear a strong relation to the DPRM’s blood sibling, direct
percolation, and, given the chance, they will readily rev
their lattice roots. As such, these distributions can easily v
late any hypothesis of KPZ universality, since such notio
are based, traditionally, upon an all-consuming continu
description; in this case, a single governing stochastic P
that transcends microscopic details, such as the lattice. N
ertheless, as we have learned the hard way for DLA, sh
ding the lattice may be a nontrivial matter. Here, we disco
that the discreteness of directed percolation is nearly as
ficult for the DPRM to disown.

Consider the following bimodal~BMD! DPRM, which
has random bond energies«521,11 drawn with probabili-
ties p,(12p), respectively@24#. For the time being, we re
strict ourselves tod51 and examine the system at zero te
perature, where DPRM statistical mechanics become
matter of global optimization; that is, we search for the
rected path of least energy, traversing the length of the
dom energy landscape. In Fig. 1~a!, we show a double-log
plot of the rms energy fluctuations of the BMD DPRM fo
various values ofp,pc'0.645, so that we are below th
21 percolation threshold for this dimensionality; i.e., t
energetically, more desirable negative energy bonds do
percolate. For each value ofp, we ensemble average ove
200 000 realizations of disorder, for paths of 1000 steps.
surprisingly, forp50.25, which is well below threshold, w
quickly retrieve the anticipated exact valuev5(z21)/2
51/3, which is the early-time roughness exponentb in the
KPZ growth model context. A least-squares fit to the fin
500 points yields 0.324. By contrast, forp50.65, just above
threshold for 21 bonds, the energy fluctuations actua
saturate (⇒v50) thanks to the presence of percolating clu
ters of 21 bonds, which bring with them a great groun
state degeneracy. Interestingly, asp increases, the fitted
value ofv decreases, indicating an increasingly greater r
played by finite spanning clusters that will exist with ev
greater probability asp approaches the thermodynam
threshold from below. Figure 1~b! provides quantitative in-
sight into the BMD DPRM scaling behavior, showing th
effectiveenergy exponentve f f as a function oft21/3. For
p50.25, the curve is essentially flat, heading stage left
the value 1/3. Forp50.52 and 0.56, the curves start from
lower point and then, following a temporary initial dro
steadily increase as expected. Even so, a fit to the latte
above, produces an estimate forv'0.295 that is still more
than 10% too low.

Of course, there is little worry that the exact value 1/3 w
be recovered in the thermodynamic limit. Things beco
increasingly more severe, though, forp50.60, 0.62, and fi-
nally 0.64, just 0.8% below threshold, where the effect
exponent decreases towards zero before finally turning ro
to begin a slow climb in its final 500 steps. Nevertheless
the end, it has still only managed to reach'0.121, quite
distant from its presumed asymptotic value. The behavior
p50.62, 3.9% below threshold suggests, however, that
climb, though slow, will stubbornly continue, a victim of
crossover length scale strongly dependent upon the di
ence (p2pc). In a lesson learned long ago, in the context
equilibrium critical phenomena, the RG’s approach to
ymptopia can be strongly dependent upon the initial dista
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from the fixed point; i.e., chosen values for the bare para
eters. For the BMD DPRM at hand, this wisdom transla
very simply. If you make a bad choice for your bare bon
energy probability distribution~e.g.,p.pc!, KPZ universal-
ity is moot, because you flow to an altogether different fixe
point function ~FPF!, that of directed percolation. For
choice sufficiently far from that boundary (p!pc), the DP
legacy is negligible and we flow undeterred to asymptop
For p→pc , however, a lengthy detour ensues, much infl
enced by the neighboring subspace defining the DP basi
attraction.

Interestingly, these findings have strong ramifications
a recent suggestion@21# regarding possible KPZ nonuniver
sality. It may be thought that the above behavior is an artif
of the particular discrete bimodal distributions that we’
chosen, characterized as they are by the single parametp.
In fact, the results are quite general and have important
plications for all simulations done to extract DPRM critic
indices @25#. Moreover, becausepc decreases with dimen
sionality ~e.g.,pc'0.382 for the 211 directed bond perco
lation on a simple cubic lattice@26#!, the DP FPF gains
greater influence asd is increased, undermining numeric
efforts to determine unadulterated, asymptotic expone
The situation can be exacerbated by a particularly p
choice of bare probability distribution. For example, a fl
distribution, the lazy man’s favorite, is fine for the 111
DPRM, but does increasingly worse in higher dimensio

FIG. 1. ~a! RMS energy fluctuations of the 111 BMD DPRM,
and ~b! associatedeffectiveenergy exponent.
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The effect is well documented@17,21# and easy to see, yet
remained entirely inexplicable, at least until now. There
simply too much integrated weight in the low end of t
distribution. As dimensionality is increased, this bare dist
bution is pushed further from the inevitable DPRM FPF a
closer to, but never within, the DP basin of attractio
thereby lengthening the resulting trip to asymptopia. Sin
CPU time is fixed, largerd means smaller system sizes an
to the simulator’s chagrin, it becomes a lose-lose situa
for the uniform distribution. The Gaussian is always a s
bet, with negligible weight at the low end, but it is not ne
essarily the most clever choice. In related work@27#, we
establish criteria for an optimally selected bare distribut
that readily yields the true many-dimensional DPRM wa
dering exponent.

An especially disastrous choice, even ind51, is the
strongly biased continuous~SBC! distribution, given by
P(0,«,1)5«2n, which possesses finite moments of ar
trary order, provided thatn,1. In Fig. 2~a!, we illustrate our
findings forve f f in zero-temperature simulations of this SB
DPRM. Forn52/3 the results are little different from the fla
distribution (n50), whose curve is nearly level, reminisce
of the largep limit of the BMD DPRM, see Fig. 1. The
effective energy exponent varies little from 1/3, with no n
ticeable effect of the DP FPF. Asn is increased to unity,
however, and more probabilistic weight is thrown into t
low end,ve f f suffers a dramatic decrease. In fact, the app

FIG. 2. Effective~a! energy, and~b! wandering exponent for
111 SBC DPRM.
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ent nonuniversality exhibited by then59/10 SBC DPRM is
strikingly similar to the that of thep50.64 BMD DPRM,
suggesting that simulations done on~presumably prohibi-
tively! larger system sizes would permit the former to r
cover the asymptotic value 1/3. Finally, an examination
ze f f for the SBC DPRM shows that, for extreme biasing, t
wandering exponent initially decreases to'0.63 in the early
stages of the walk@see Fig. 2~b!#, a vestigial link to DP’s
n' /n i50.632660.0002 in this dimensionality. This finding
may have repercussions for the statistics of fractal tear li
in paper@28#, a physical realization of the 111 DPRM, but
one in which dynamic aspects, associated with percola
paths, may have important effects.

A characteristic feature of the BMD DPRM is the onset
an ever-increasing ground-state degeneracy asp increases
abovepc . The globally optimal path of least energy is n
longer unique; rather, one obtains for a single realization
the random energy landscape, aminimal cluster, which cor-
responds to a directed lattice animal with multiple paths
equal energy. Of course, belowpc , there is always a single
such trajectory and the free-energy profile, when avera
over many realizations of disorder, exhibits its tell-tale qu
dratic form@11,29#, centered about the minimal value of th
diagonal direction. In Fig. 3, we show the evolution of th
111 BMD DPRM free-energy profile, as a function o
transverse position along the final time slice, for increas
values ofp. As is apparent from the figure, the profile b
comes progressively flatter asp→pc , at which point the
curve acquires a discontinuous first derivative, and cons
of a flat segment dead center, plus quadratic wings. An
amination of the free-energy profile for the 111 SBC
DPRM reveals manifestation of a similar phenomenon
n→1, although the effect is only suggestive, since a conti
ous distribution precludes the possibility of true ground-st
degeneracy. Even so, the perturbing influence of BM
DPRM degeneracy may manifest itself as a transient gla
regime in the original model.

As an alternative indication of the strong effect of th
directed percolation FPF, we show, in Fig. 4, the disord
averaged free-energy probability distribution function~PDF!
for the 111 BMD DPRM, corresponding to various value
of p below the percolation threshold. Note that these refe

FIG. 3. Terminal energy profile of 111 BMD DPRM; single
realization of the random energy landscape. Note the condens
of ground-state degeneracy asp→pc .
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the total energy of the thousand-step walks, soE521000 is
the extremal value of the abscissa. Forp.pc , the free-
energy PDF is ad-function spike at this value. However, fo
p,pc , the 21 bonds do not percolate and the PDF
pushed off this point. A standard measure of KPZ/DPR
universality is theskewnessof this distribution, which is
known @17,30# to be negative, signature of the global op
mization at work, and to have the value'20.2960.02 in
this dimensionality. Forp50.25, the rightmost curve, we
find 20.274 for this parameter, in keeping with the stand
DPRM result. However, asp rises toward threshold
p50.37, 0.52, 0.56, 0.62, we find diminishing skewne
20.263,20.189,20.161,20.074, respectively, as the free

FIG. 4. Disorder-averaged free-energy probability distribut
function for 111 BMD DPRM.
d

,

energy PDF slides left and is nearly transformed into
d-function spike characteristic of the directed percolati
FPF. In fact, for p50.64, which is still below threshold
though yielding a startlingly small effective energy expone
@Fig. 1~b!#, the skewness has become sizeably posit
10.484. This state of affairs is inevitable, sinceE,21000
is ruled out and the ensemble averaging is dominated
globally optimal paths that are almost entirely21 bonds,
with one or two11 bonds located somewhere early on
the trajectory. The behavior of the bond-energy PDF is ac
ally quite similar for the SBC DPRM; e.g., forn54/5, we
find a skewness,20.051, that is nearly zero. More extrem
biasing,n59/10, produces positive skewness, leaving lit
doubt about the strong DP-DPRM connection.

In summary, we have explored the close blood relatio
ship between DP and DPRM problems, discovering why
the case of the latter, certain bare bond-energy PDFs
superior, while others are outright damning. That these
fects are already severe ind51 is somewhat surprising
Nevertheless, as dimensionality increases, the expanding
basin of attraction exerts ever greater influence upon tr
sient DPRM scaling, thanks to smaller percolation thre
olds. An intriguing thought concerns reversing this pow
struggle; i.e., how might the DPRM affect a more broad
defined DP problem? Might this transcendent model th
provide the link for the DP and DPRM to share a comm
UCD, dc54?

We thank H. W. Diehl, J. Krug, and the Bouchauds f
insightful questions that inspired this research effort. Fin
cial support has been provided by the NSF under Grant
DMR-9528071.
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